
File Management in C

Console oriented Input/Output

• Console oriented – use terminal
(keyboard/screen)

• scanf(“%d”,&i) – read data from keyboard

• printf(“%d”,i) – print data to monitor

• Suitable for small volumes of data

• Data lost when program terminated

Real-life applications

• Large data volumes

• E.g. physical experiments (CERN collider),
human genome, population records etc.

• Need for flexible approach to store/retrieve
data

• Concept of files

Files

• File – place on disc where group of related
data is stored

– E.g. your C programs, executables

• High-level programming languages support
file operations

– Naming

– Opening

– Reading

– Writing

Defining and opening file

• To store data file in secondary memory (disc)
must specify to OS

– Filename (e.g. sort.c, input.data)

– Data structure (e.g. FILE)

– Purpose (e.g. reading, writing, appending)

Filename

• String of characters that make up a valid
filename for OS

• May contain two parts

– Primary

– Optional period with extension

General format for opening file

• fp

– contains all information about file

– Communication link between system and program

• Mode can be

– r open file for reading only

– w open file for writing only

– a open file for appending (adding) data

 FILE *fp; /*variable fp is pointer to type FILE*/

fp = fopen(“filename”, “mode”);
/*opens file with name filename , assigns identifier to fp */

Different modes
• Writing mode

– if file already exists then contents are deleted,

– else new file with specified name created

• Appending mode

– if file already exists then file opened with contents
safe

– else new file created

• Reading mode

– if file already exists then opened with contents
safe

– else error occurs.

FILE *p1, *p2;
p1 = fopen(“data”,”r”);
p2= fopen(“results”, w”);

Additional modes

• r+ open to beginning for both reading/writing

• w+ same as w except both for reading and
writing

• a+ same as ‘a’ except both for reading and
writing

Closing a file
• File must be closed as soon as all operations

on it completed

• Ensures

– All outstanding information associated with file
flushed out from buffers

– All links to file broken

– Accidental misuse of file prevented

• If want to change mode of file, then first close

Closing a file

• pointer can be reused after closing

Syntax: fclose(file_pointer);

Example:

FILE *p1, *p2;
p1 = fopen(“INPUT.txt”, “r”);
p2 =fopen(“OUTPUT.txt”, “w”);
……..
……..
fclose(p1);
fclose(p2);

Input/Output operations on files

• C provides several different functions for
reading/writing

• getc() – read a character

• putc() – write a character

• fprintf() – write set of data values

• fscanf() – read set of data values

• getw() – read integer

• putw() – write integer

Program to read/write using
getc/putc

#include <stdio.h>
main()
{ FILE *fp1;
 char c;
 f1= fopen(“INPUT”, “w”); /* open file for writing */

 while((c=getchar()) != EOF) /*get char from keyboard until
CTL-Z*/
 putc(c,f1); /*write a
character to INPUT */

 fclose(f1); /* close INPUT
*/
 f1=fopen(“INPUT”, “r”); /* reopen file */

 while((c=getc(f1))!=EOF) /*read character from file INPUT*/
 printf(“%c”, c); /* print character to
screen */

 fclose(f1);

